Random Variables , Distributions and Expectation 1 Random Variables

نویسندگان

  • Albert R. Meyer
  • Ronitt Rubinfeld
چکیده

We’ve used probablity to model a variety of experiments, games, and tests. Throughout, we have tried to compute probabilities of events. We asked, for example, what is the probability of the event that you win the Monty Hall game? What is the probability of the event that it rains, given that the weatherman carried his umbrella today? What is the probability of the event that you have a rare disease, given that you tested positive? But one can ask more general questions about an experiment. How hard will it rain? How long will this illness last? How much will I lose playing 6.042 games all day? These ques­ tions are fundamentally different and not easily phrased in terms of events. The problem is that an event either does or does not happen: you win or lose, it rains or doesn’t, you’re sick or not. But these questions are about matters of degree: how much, how hard, how long? To approach these questions, we need a new mathematical tool.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independent random variables

1 Last two lectures ¯ probability spaces ¯ probability measure ¯ random variables and stochastic processes ¯ distribution functions ¯ independence ¯ conditional probability ¯ memoriless property of geometric and exponential distributions ¯ expectation ¯ conditional expectation (double expectation) ¯ mean-square estimation 1

متن کامل

CONDITIONAL EXPECTATION IN THE KOPKA'S D-POSETS

The notion of a $D$-poset was introduced in a connection withquantum mechanical models. In this paper, we introduce theconditional expectation of  random variables on theK^{o}pka's $D$-Poset and prove the basic properties ofconditional expectation on this  structure.

متن کامل

Distributions of the Ratios of Independent Kumaraswamy Variables and System Reliability Applications

‎In this article‎, ‎first of all‎, ‎the Kumaraswamy distribution is introduced‎. ‎Then‎, ‎the joint and marginal distributions of W = X1/X2 and T = X1/X1+X2 where X1 and X2 are independent Kumaraswamy random variables‎, ‎are obtained and the moments of these random variables are computed‎. ‎The distribution of random variables  W  and T  can be used in reliability studies and statistical models...

متن کامل

On Bernoulli Decompositions for Random Variables, Concentration Bounds, and Spectral Localization

As was noted already by A. N. Kolmogorov, any random variable has a Bernoulli component. This observation provides a tool for the extension of results which are known for Bernoulli random variables to arbitrary distributions. Two applications are provided here: i. an anti-concentration bound for a class of functions of independent random variables, where probabilistic bounds are extracted from ...

متن کامل

Ordered Random Variables from Discontinuous Distributions

In the absolutely continuous case, order statistics, record values and several other models of ordered random variables can be viewed as special cases of generalized order statistics, which enables a unified treatment of their theory. This paper deals with discontinuous generalized order statistics, continuing on the recent work of Tran (2006). Specifically, we show that in general neither re...

متن کامل

Random Variables and Their Distributions

Contents 1. Introduction. 2. The distribution function of a random variable. 3. Classification of random variables. 4. Some special discrete probability distributions. 5. Some special continuous probability distributions. 6. Location characteristics of a real-valued random variable. 7. Dispersion characteristics of a real-valued random variable. 8. Joint distribution functions. 9. Independence ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005